No Pain, Big Gain:
Truncated G-protein Coupled Receptors and New Targets for Opiate Action

Gavril Pasternak, MD PhD
Anne Burnett Tandy Chair in Neurology
Member and Lab Head
Molecular Pharmacology and Chemistry Program
Memorial Sloan-Kettering Cancer Center
and
Professor of Pharmacology, Neurology & Neuroscience and Psychiatry
Weill Cornell Medical College
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- Potent Analgesic (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- **Potent Analgesic** (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit

Spared Nerve Injury

Baseline vs. D7 Post-SNI withdrawal threshold over time:

- **Saline**
- **IBNtxA**

Data from Mogil and Weiskopf
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- **Potent Analgesic** (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit

Mogil and Weiskopf
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- **Potent Analgesic** (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit

Mogil and Weiskopf
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- Potent Analgesic (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- Potent Analgesic (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- Potent Analgesic (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit

* *p<0.001
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- Potent Analgesic (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

• Potent Analgesic (10-fold more potent than morphine)
• Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
• Inactive in an exon 11 MOR-1 KO mouse
• Reversed by the opioid antagonist levallorphan
• Not sensitive to selective traditional opioid antagonists
• No respiratory depression
• No physical dependence
• No rewarding behavior in conditioned place preference
• No cross tolerance to morphine
• Little inhibition of gastrointestinal transit
3-Iodobenzoyl-6β-naltrexamide (IBNtxA)

- Potent Analgesic (10-fold more potent than morphine)
- Active in a triple E1-MOR-1/DOR-1/KOR-1 KO mouse
- Inactive in an exon 11 MOR-1 KO mouse
- Reversed by the opioid antagonist levallorphan
- Not sensitive to selective traditional opioid antagonists
- No respiratory depression
- No physical dependence
- No rewarding behavior in conditioned place preference
- No cross tolerance to morphine
- Little inhibition of gastrointestinal transit
Crystal Structure of the mouse mu opioid receptor

Binding pocket: TM 3, 5, 6, 7

Note: The N- & C-termini have been truncated

PMID: 22437502
3’- Alternative splicing of selected full length MOR-1 variants

Mouse *Oprm1* gene

Exon 1

mMOR-1
mMOR-1A
mMOR-1B1
mMOR-1B2
mMOR-1B3
mMOR-1B4
mMOR-1B5
mMOR-1C
mMOR-1D
mMOR-1E
mMOR-1F

These exons encode all 7TM domains and the binding pocket

These exons encode the variable intracellular C-terminus

LENLEAETAPLP
VRSL
KIDLF
KLMMWRAMPT
FKRHLAIMLSL
DN
TSRLQ
AHQKPQECCLK
CRCLSLTILVIC
LHFQHQFFIMI
KKNVS
CV
PTLAVSVAQIFT
GYPSPT7VEKP
CKSCMDRGMR
NLLPDGPQRGE
SGEQGLGR
RNEEPS
KKLDSQIYGC
VQHPV
APCACEVPANR
GQTKASDLLDEL
LETGSHQADAE
TNPGPYESKGC
AEPLAISLVPLY
125I-BNtxA Binding in KO Mice

- High affinity binding in triple KO mice
- High affinity binding in WT mice with blockade of traditional opioid receptors
- Loss of binding in E11 and E2 KO mice
- The target lacks MOR-1 exon 1 but contains E11 and E2

![Diagram showing MOR-1 splice variants and binding affinity](attachment:image.png)
Schematic of MOR-1 splicing in the mouse

Oprm1

- mMOR-1
- mMOR-1A
- mMOR-1B1
- mMOR-1B2
- mMOR-1B3
- mMOR-1B4
- mMOR-1B5
- mMOR-1C
- mMOR-1D
- mMOR-1E
- mMOR-1F
- mMOR-1H
- mMOR-1i
- mMOR-1J
- mMOR-1o
- mMOR-1P
- mMOR-1G
- mMOR-1K
- mMOR-1L
- mMOR-1M
- mMOR-1N
- mMOR-1Q
- mMOR-1R
- mMOR-1S
- mMOR-1T

Exon 11 12 1 13 14 2 3 15 5 4 10 6 7 8 9

7TM

6TM (lacks TM1/exon 1)

1TM (only has TM1)
Selectivity of $^{125\text{I}}$-IBNtxA Binding in triple KO mouse brains

<table>
<thead>
<tr>
<th>Inactive Drugs ((K_i > 1000) nM)</th>
<th>Drug</th>
<th>(K_i) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mu selective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAMGO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxymorphone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxycodone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morpine-glucuronide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)-Endorphin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meperidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappa(_1) selective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U50,488H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DynorphinA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)-Neoendorphin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta selective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enkephalin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DADLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPDPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNC80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antagonists		
\(\beta\)-FNA		36
Naloxonone		52
Naltrexone		21
Diprenorphine		2.2
Levallophan		0.34

Benzomorphans		
Ketocyclazocine		0.04
(-)-SKF10,047		14
(-)-Ethylketocyclazocine		0.21
Cyclazocine		1.8

Kappa\(_3\)		
NalBzoH		0.6
Nalorphine		3.7
Levorphanol*		8.8
Buprenorphine*		1.8
Nalbuphine*		3.5
Butorphanol*		2.9

Used clinically as analgesics
Analgesia in Exon 11 MOR-1 KO

<table>
<thead>
<tr>
<th>Drug</th>
<th>ED$_{50}$ (mg/kg)</th>
<th>Shift</th>
<th>125I-BNtxA Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT C57</td>
<td>Exon 11 MOR-1 KO</td>
<td>Triple KO Ki (nM)</td>
</tr>
<tr>
<td>Morphine*</td>
<td>1.6</td>
<td>2.6</td>
<td>1.6</td>
</tr>
<tr>
<td>IBNtxA</td>
<td>0.53</td>
<td>> 20</td>
<td>>35</td>
</tr>
<tr>
<td>NalBzoH</td>
<td>22</td>
<td>>100</td>
<td>>5</td>
</tr>
<tr>
<td>Nalbuphine</td>
<td>41.8</td>
<td>>200</td>
<td>>5</td>
</tr>
<tr>
<td>Ketocyclazocine</td>
<td>4.2</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>Levorphanol *</td>
<td>5</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>Butorphanol *</td>
<td>12.4</td>
<td>200</td>
<td>16</td>
</tr>
<tr>
<td>Buprenorphine*</td>
<td>0.2</td>
<td>>10</td>
<td>>50</td>
</tr>
</tbody>
</table>

*Used clinically as analgesics
125I-BNtxA Binding to MOR-1G / ORL$_1$ dimers

<table>
<thead>
<tr>
<th>Transfection</th>
<th>125I-BNtxA Binding</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOR-1G alone</td>
<td>None</td>
<td>6 TM</td>
</tr>
<tr>
<td>ORL$_1$ alone</td>
<td>None</td>
<td>7 TM</td>
</tr>
<tr>
<td>MOR-1G + ORL$_1$</td>
<td>K_D 0.19 nM</td>
<td>Heterodimer</td>
</tr>
</tbody>
</table>

![Graph showing the binding of IBNtxA to different transfections]
Opioid receptor diversity

Opioid receptor actions are complex, both at the pharmacological and molecular levels.

Receptor diversity can be achieved both by alternative splicing and dimerization.

Alternative splicing of the C-terminal of the full length variants may impact the composition of the receptor complex, its localization within the cell and within the brain and thereby define their functions.

When splice variants contain identical binding pockets, selectivity may be achieved by varying the intrinsic activity/efficacy of a drug at the target rather than by affinity.

Truncated variants can modulate full length MOR-1 variants or generate novel receptor targets through heterodimerization.

The molecular mechanisms of opioid receptor diversity may be revealing a generalized approach for generating receptor diversity among G-protein coupled receptors.
Laboratory of Molecular Neuropharmacology
Memorial Sloan-Kettering Cancer Center

Molecular Biology
Ying-Xian Pan, PhD
Jin Xu
Ming-Ming Xu

Molecular Pharmacology
Steve Grinnel
Joel Schrock
Gina Marrone
Loriann Mahurter
Mohammad Islam, PhD

Chemistry
Susruta Majumdar, PhD
Julie Pickett
Joan Subrath

Collaborators
Cornell
Charles Inturrisi, PhD

Rutgers
John Pintar, PhD
Michael Ansonoff, PhD

McGill
Jeff Mogil, PhD
Jeff Weiskopf, PhD